
1. Introduction
The ambient (or background) solar wind is the long-lived large-scale plasma that emanates from the Sun and 
travels into interplanetary space, which excludes interplanetary coronal mass ejections and other transient events. 
It is crucial to accurately predict the ambient solar wind since interplanetary coronal mass ejections, the primary 
source of extreme space weather events, are modeled as perturbations to the ambient solar wind (Odstrcil & 
Pizzo, 1999). Additionally, corotating interaction regions between fast and slow ambient solar wind streams are 
drivers of moderate space weather events (Riley et al., 2012). In fact, corotating interaction regions have been 
found to contribute to 70% of geomagnetic activity at Earth during solar minimum and about 30% during solar 
maximum (Richardson et al., 2000). Thus, generating reliable predictions of the ambient solar wind is essential 
for improving space weather prediction capabilities and for accurately assessing the risk of space weather events.

State-of-the-art ambient solar wind models couple two regions: the corona and heliosphere. The coronal domain 
spans from the surface of the Sun (1RS, i.e., one solar radius) up to the coronal outer boundary, which is typically 
set to a distance between 2.5RS and 30RS depending on the model that is used. The solution at the coronal outer 
boundary is extrapolated into the heliospheric domain up to Earth's orbit and beyond. High-fidelity simulations 
of the ambient solar wind are constructed via time-dependent magnetohydrodynamic (MHD) models, such as the 
Magnetohydrodynamics Algorithm outside a Sphere (Linker et al., 1999; Mikić et al., 2018; Riley et al., 2019) 
and the Space Weather Modeling Framework (Toth et al., 2005; van der Holst et al., 2014). Such MHD models 
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simulate the ambient solar wind by relaxing the coronal and heliospheric simulations to a steady-state solution, 
requiring high computational costs. In an effort to reduce simulation time (especially in operational settings), 
the space weather community commonly uses lower-fidelity models based on reduced physics and empir-
ical relations. A well-established and widely used chain of lower-fidelity models couples the Potential Field 
Source Surface (PFSS) (Altschuler & Newkirk, 1969; Schatten et al., 1969), Wang-Sheeley-Arge (WSA) (Arge 
et al., 2004), and Heliospheric Upwind eXtrapolation (HUX) (Issan & Riley, 2022; Riley & Issan, 2021; Riley & 
Lionello, 2011) models.

There has been a continuous effort in the space weather community to improve ambient solar wind models by 
comparing the model predictions to in situ spacecraft observations (Reiss et al., 2022). Such in situ observa-
tions can also be leveraged to reduce prediction uncertainties stemming from initial conditions, boundary condi-
tions, fitting parameters, numerical errors, measurement noise, etc. Here, we study parametric uncertainty in the 
PFSS → WSA → HUX model chain. We rigorously examine the uncertainty and sensitivity of 11 parameters, 
such as the source surface height and WSA numerical parameters, and their impact on the solar wind radial 
velocity predictions near Earth. Quantifying and reducing the parametric uncertainties in the ambient solar wind 
models is critical for making informed decisions in operational settings.

As a core contribution of this work, we present a comprehensive uncertainty quantification (UQ) framework to 
advance the use of rigorous UQ techniques in space weather. The proposed UQ framework is described in the 
following steps and illustrated in Figure 1. First, we perform variance-based global sensitivity analysis to identify 
which parameters influence the solar wind predictions near Earth the most. Subsequently, parameters that hardly 
contribute to the prediction variability are set to their fixed deterministic values, which facilitates a posteriori 
parameter dimensionality reduction. Then, we apply Bayesian inference to uncover the posterior density of the 
influential parameters, which is the conditional probability of the influential parameters given observational 
data. Lastly, we sample from the learned posterior densities and generate an ensemble of the ambient solar wind 
predictions near Earth, which demonstrates that the UQ framework reduces the parametric uncertainty in the 
predicted solar wind velocity.

Sensitivity analysis quantifies the contribution of parametric uncertainty on the variability of a quantity of 
interest (QoI). Common methods can be classified into two groups: local and global. Local sensitivity analysis 
methods vary the parameters about a deterministic value by computing local partial derivatives, whereas global 

Figure 1. A comprehensive uncertainty quantification framework that allows for ensemble predictions with reduced 
uncertainties. The framework proceeds in the following steps: First, we identify the problem space and parameters that have 
uncertainties. Second, through global sensitivity analysis, we find out which of these parameters significantly impacts the 
variance of the quantity of interest. Third, we infer the full distribution of the most important parameters through Bayesian 
inference. Fourth, we make ensemble predictions with these newfound parameter distributions.
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sensitivity analysis methods account for variance effects in the entire parameter space (Saltelli et al., 2008). We 
use variance-based global sensitivity analysis by estimating Sobol' sensitivity indices (Sobol', 2001). A sensi-
tivity analysis study by Jivani et  al.  (2022) estimated the Sobol' sensitivity indices associated with uncertain 
parameters in the MHD Alfvén Wave Solar atmosphere Model (van der Holst et  al.,  2014). A recent study 
by Reiss et al. (2020) used Morris screening (Morris, 1991), a hybrid local/global sensitivity analysis method, 
to identify the most influential parameters in the WSA model. The Morris screening method averages local 
derivative approximations to provide global sensitivity measures (Smith, 2013, §15.2). It is typically used when 
variance-based methods are prohibitively expensive since it can only rank the parameters based on their impor-
tance but, unlike variance-based methods, does not quantify the relative contributions of each parameter to the 
QoI variance. Our study differs from Reiss et al. (2020) since we consider parametric uncertainty stemming not 
only from WSA but also from PFSS and HUX. Additionally, our study differs from Reiss et al. (2020) since we 
compute full global sensitivity information.

Parameter estimation techniques are typically divided into two approaches: frequentist and Bayesian. The frequen-
tist approach seeks to find a single “optimal” value of each parameter by solving an optimization problem. For 
example, using maximum likelihood estimation (Milton & Arnold, 2003), such that the optimal values of the 
parameters minimize the difference between the model prediction and observational data. Riley et al.  (2015), 
Reiss et al.  (2020), and Kumar and Srivastava  (2022) took a frequentist approach to find the optimal param-
eters in the WSA model. This paper presents a Bayesian approach to learning the uncertain parameters in the 
PFSS → WSA → HUX model chain. The Bayesian approach views the parameters as random variables and seeks 
to learn their posterior density. In the Bayesian setting, the solution to the UQ inverse problem is represented by a 
probability density function of the parameters. In stark contrast, the frequentist approach yields a point estimate. 
Thus, the Bayesian approach provides a complete picture of the uncertainty associated with the model parame-
ters. Subsequently, relevant point estimates, such as the maximum a posteriori (MAP), variance, and mean, can 
all be computed from the posterior density. Here, we use Markov chain Monte Carlo (MCMC) (Hastings, 1970; 
Metropolis et al., 1953) to learn the posterior densities of the most influential parameters. In particular, we employ 
the MCMC affine invariant ensemble sampler (AIES) (Foreman-Mackey et al., 2013; Goodman & Weare, 2010), 
which is robust to different scales in the parameters.

The main questions we seek to answer via the proposed UQ framework are: (a) How does parametric uncertainty 
in the PFSS → WSA → HUX model chain impact the uncertainty in the solar wind velocity predictions near 
Earth? Can we reduce such uncertainties using Bayesian inference methods? (b) What are the most influential 
parameters in the model chain? (c) How do the posterior densities of the influential parameters change over time? 
Is there a clear trend in the posterior evolution? (d) Is the model chain robust to the choice of its parameters? Is it 
reliable enough to be used for real-time operational forecasting?

This paper is organized as follows. Section 2 describes the models and observational data used in this work. 
Section 3 discusses variance-based global sensitivity analysis, an algorithm to compute Sobol' sensitivity indices 
via Monte Carlo (MC) integration, and numerical results. In Section 4 we discuss Bayesian inference via MCMC 
algorithms and numerical results. Section 5 then offers conclusions and an outlook to future work.

2. Ambient Solar Wind Model Chain and Observational Data
We consider the coupling of three well-established models: (a) PFSS, (b) Wang-Sheeley-Arge (WSA), and (c) 
Heliospheric Upwind eXtrapolation (HUX), to predict the ambient solar wind radial velocity near Earth. Reiss 
et  al.  (2019, 2020) and Bailey et  al.  (2021) use a similar chain of models with the addition of the Schatten 
Current Sheet (SCS) model, developed by Schatten et  al.  (1969), resulting in the following model chain: 
PFSS → SCS → WSA → HUX. The SCS model is added to correct the PFSS radial magnetic field latitudinal 
variations to match Ulysses' observations (Wang & Sheeley,  1995). However, a recent study by Kumar and 
Srivastava (2022) showed that adding SCS to the chain of models did not necessarily improve the accuracy of 
the solar wind radial velocity predictions at L1 (during 2006–2011). We thus analyze the PFSS → WSA → HUX 
model chain.

The PFSS model is used to predict the magnetic field in the coronal domain. The PFSS magnetic field solution 
is then used as an input to the WSA relation, which computes the solar wind radial velocity at the outer bound-
ary of the coronal domain. The WSA results are then set as the initial condition for the HUX model, which 
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extrapolates  the solar wind radial velocity into the heliospheric domain. Finally, the model chain solar wind 
radial velocity predictions are compared with Advanced Composition Explorer (ACE) spacecraft in situ obser-
vations. We use synoptic magnetograms from Global Oscillation Network Group (GONG) as the inner boundary 
condition for the PFSS model. A flowchart of the models and data used in this study is shown in Figure 2. The 
subsequent sections explain the different components of the model chain and observational data in further detail.

2.1. Potential Field Source Surface (PFSS) Model

The PFSS model proposed by Altschuler and Newkirk (1969) and Schatten et al. (1969) solves for the coronal 
magnetic field B(r, θ, ϕ) = [Br(r, θ, ϕ), Bθ(r, θ, ϕ), Bϕ(r, θ, ϕ)] from the photosphere (the visible surface of the 
Sun) to the outer radius called the source surface. The PFSS model assumes that beyond the source surface, 
the magnetic field is purely radial, that is, open magnetic field lines are carried into interplanetary space by the 
solar wind. Additionally, the PFSS model neglects the coronal electric current density since, above the photo-
sphere, there is a large decrease in particle density and a smaller decrease in magnetic field strength (Kruse 
et  al., 2020).  It  also assumes that the corona is electrostatic since during solar minimum, the corona evolves 
slowly, and features can last for several Carrington rotations (CRs). It is important to mention that some of the 
above assumptions hold less during specific time periods. For example, during solar maximum, the photospheric 
field changes more rapidly, challenging the electrostatic assumption. Additionally, Riley et al. (2006) found that 
the concept of spherical source surface is more reasonable during solar maximum than during solar minimum. 
These assumptions (coupled with Ampère's law) lead to

∇ × 𝐁𝐁 = 0, 

so that the magnetic field can be described by its potential B = −∇Ψ. By combining the potential description with 
Gauss's law (∇ ⋅ B = 0), we get Laplace's equation

∇
2
Ψ = 0, 

subject to the following boundary conditions

𝜕𝜕Ψ

𝜕𝜕𝜕𝜕
(𝜕𝜕 = 1𝑅𝑅S, 𝜃𝜃, 𝜃𝜃) = 𝑔𝑔(𝜃𝜃, 𝜃𝜃),

𝜕𝜕Ψ

𝜕𝜕𝜃𝜃
(𝜕𝜕 = 𝜕𝜕SS, 𝜃𝜃, 𝜃𝜃) =

𝜕𝜕Ψ

𝜕𝜕𝜃𝜃
(𝜕𝜕 = 𝜕𝜕SS, 𝜃𝜃, 𝜃𝜃) = 0,

Ψ(𝜕𝜕, 𝜃𝜃, 𝜃𝜃 = 0) = Ψ(𝜕𝜕, 𝜃𝜃, 𝜃𝜃 = 2𝜋𝜋),

 (1)

where θ ∈  [0, π] is Carrington colatitude, ϕ ∈  [0, 2π] is Carrington longitude, RS denotes solar radii unit of 
distance which is 695,700 km, and approximately 1/215th of an astronomical unit, r ∈ [1RS, rSS] is the radial 
distance from the center of the Sun, rSS is the source surface height, and g(θ, ϕ) is a given photospheric synoptic 
map. The PFSS model is typically solved via spherical harmonic expansion or numerical discretization methods 
(Caplan et al., 2021; Liu et al., 2022; Stansby et al., 2020). We employ the pfsspy Python package (version 
1.1.2), developed by Stansby et al. (2020), for solving PFSS via finite-difference discretization and for tracing 
magnetic field lines. The finite-difference discretization is on a rectilinear grid equally spaced in sin(colatitude), 
longitude, and ln(radius) coordinates, see Stansby et  al.  (2020) for more details on the solver. In this study, 

Figure 2. A flowchart of the models (blue panels: Potential Field Source Surface, Wang-Sheeley-Arge, and Heliospheric 
Upwind eXtrapolation) and observational data (green panels: Global Oscillation Network Group [GONG] and Advanced 
Composition Explorer [ACE]) utilized in this study. The GONG and ACE images are adapted from NSO (https://gong.nso.
edu) and NASA (https://science.nasa.gov), respectively.

https://gong.nso.edu
https://gong.nso.edu
https://science.nasa.gov


Space Weather

ISSAN ET AL.

10.1029/2023SW003555

5 of 23

all simulations are performed on a 180  ×  360  ×  100 grid resolution in sin(colatitude), longitude, and ln(ra-
dius), respectively, that is, we solve for 6.48 × 10 6 states. As an illustrative example, Figure 3a shows the radial 
magnetic field at the photosphere (inner boundary) for CR 2053 obtained by the GONG synoptic maps (see 
Section 2.4.1) and Figure 3b shows the radial magnetic field results at the source surface (outer boundary), which 
is set to rSS = 2.5RS for this example.

2.2. Wang-Sheeley-Arge (WSA) Model

The WSA model developed by Arge et al. (2004) is a semi-empirical model of the ambient solar wind velocity 
in the inner-heliosphere, which fuses the Wang-Sheeley (WS) model developed by Wang and Sheeley (1990) 
with the distance to the coronal hole boundary (DCHB) model developed by Riley et al.  (2001). The WSA 
model (coupled with the MHD Enlil model) is used in operational forecasting at the National Oceanic and 
Atmospheric Administration (NOAA) Space Weather Prediction Center (Parsons et al., 2011). The WSA model 
is given by

𝑣𝑣wsa(𝑓𝑓𝑝𝑝, 𝑑𝑑; 𝑣𝑣0, 𝑣𝑣1, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼, 𝛼𝛼) = 𝑣𝑣0 +
𝑣𝑣1 − 𝑣𝑣0

(1 + 𝑓𝑓𝑝𝑝)
𝛼𝛼

(

𝛼𝛼 − 𝛼𝛼 exp

(

−

(

𝑑𝑑

𝛼𝛼

)𝛼𝛼
))𝛼𝛼

, 

Figure 3. An illustration of different components in Potential Field Source Surface (PFSS) → Wang-Sheeley-Arge 
(WSA) → Heliospheric Upwind eXtrapolation (HUX) model chain during CR 2053. The PFSS radial magnetic field 
at the lower and upper boundaries is shown in panels (a, b). The lower boundary condition is obtained from Global 
Oscillation Network Group synoptic maps and the extrapolated upper boundary is shown at the source surface, which is 
set to rSS = 2.5RS in this example. The WSA inputs, that is, the magnetic field expansion factor and coronal hole map, 
are shown in panels (c, d). In subfigure (d), the red (blue) coronal hole areas show the negative inward (positive outward) 
fields and the black dashed lines show the magnetic field lines traced from Advanced Composition Explorer (ACE)'s 
projected trajectory at the source surface back to the photosphere. Finally, (e) shows a comparison of the model chain 
solar wind radial velocity predictions at L1 with ACE in situ observations. In this example, we set the WSA parameters to 

𝐴𝐴 𝐴𝐴0 = 250
km

s
, 𝐴𝐴1 = 945

km

s
, 𝛼𝛼 = 0.16, 𝛽𝛽 = 1, 𝛾𝛾 = 0.6, 𝑤𝑤 = 0.02rad, 𝛿𝛿 = 1.75, 𝜓𝜓 = 3 and the HUX parameters to αacc = 0.15, 

rh = 50RS.
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where v0 and v1 correspond to the minimum and maximum solar wind velocities, d is the minimum angular 
distance that an open field footpoint lies from a coronal hole boundary, fp is the magnetic field expansion factor, 
and α, β, γ, δ, w, ψ are additional tunable parameters.

The magnetic expansion factor fp is derived from the coronal magnetic field by tracing down field lines from the 
source surface to the photosphere, namely

𝑓𝑓𝑝𝑝 =

(

1𝑅𝑅S

𝑟𝑟SS

)2
|

|

|

|

|

𝐵𝐵𝑟𝑟

(

1𝑅𝑅S, 𝜃𝜃p, 𝜙𝜙p

)

𝐵𝐵𝑟𝑟(𝑟𝑟SS, 𝜃𝜃SS, 𝜙𝜙SS)

|

|

|

|

|

, (2)

where Br(r, θ, ϕ) is the radial magnetic field component, and the subscripts p and SS refer to the field line trace at 
the photosphere and solar surface, respectively. The distance to the coronal hole boundary d is also derived from 
the coronal magnetic field solution via a two-step approach. First, the coronal hole regions are identified by trac-
ing field lines from the photosphere to the source surface and detecting the footpoint of all open magnetic field 
lines, that is, coronal hole regions. Second, the great-circle angular distance d is computed between the footpoints 
of the open magnetic field lines to the nearest coronal hole boundary. To illustrate these concepts, Figure 3c 
presents the magnetic expansion factor for CR 2053, and the black dashed line shows ACE's spacecraft projected 
trajectory. Similarly, Figure 3d shows the coronal hole map for CR 2053 with ACE's trajectory field line traces, 
which mainly trace down to low-latitude coronal holes.

2.3. Heliospheric Upwind eXtrapolation (HUX) Model

The two-dimensional HUX model developed by Riley and Lionello (2011) extrapolates the coronal solar wind 
radial velocity into the heliospheric domain. The HUX model is based on simplified physical assumptions of 
the fluid momentum equation, which reduces to the following nonlinear scalar homogeneous time-stationary 
equation

−Ωrot

(

𝜃𝜃 = �̂�𝜃
)𝜕𝜕𝜕𝜕(𝑟𝑟𝑟 𝑟𝑟)

𝜕𝜕𝑟𝑟
+ 𝜕𝜕(𝑟𝑟𝑟 𝑟𝑟)

𝜕𝜕𝜕𝜕(𝑟𝑟𝑟 𝑟𝑟)

𝜕𝜕𝑟𝑟
= 0𝑟 (3)

where the independent variables are the radial distance from the Sun r and Carrington longitude ϕ, and 
the dependent variable is the solar wind radial velocity v(r, ϕ). The angular frequency of the Sun's rota-

tion is evaluated at a constant Carrington colatitude 𝐴𝐴 �̂�𝜃 (Riley & Issan,  2021), which is estimated by 

𝐴𝐴 Ωrot(𝜃𝜃) =
2𝜋𝜋

25.38
−

2.77𝜋𝜋

180
cos

(

𝜋𝜋

2
− 𝜃𝜃

)2

 . The problem is subject to the boundary condition 𝐴𝐴 𝐴𝐴(𝑟𝑟SS, 𝜙𝜙) = 𝐴𝐴𝑟𝑟SS
(𝜙𝜙) and is 

defined on the longitudinal periodic domain 0 ≤ ϕ ≤ 2π and r ≥ rSS. Riley and Lionello (2011) suggest adding 
an acceleration boost to the boundary condition (before propagation) to account for the residual acceleration 
present in the inner heliosphere, that is,

𝑣𝑣acc

(

𝑟𝑟SS, 𝑣𝑣𝑟𝑟
SS
(𝜙𝜙); 𝛼𝛼acc, 𝑟𝑟ℎ

)

= 𝛼𝛼acc

(

1 − 𝑒𝑒−𝑟𝑟SS
∕𝑟𝑟ℎ

)

𝑣𝑣𝑟𝑟
SS
(𝜙𝜙), (4)

where 𝐴𝐴 𝐴𝐴𝑟𝑟SS
(𝜙𝜙) is the radial velocity at the source surface (obtained from WSA relation), αacc is the acceleration 

factor, and rh is the radial location at which the acceleration ends. We discretize Equation 3 via finite-differencing 
on a uniform mesh with 600 × 300 resolution in ϕ ∈ [0, 2π] and r ∈ [rSS, rmax], respectively. We set rmax to be 
ACE's maximum radial distance from the Sun for the considered CR. We solve the equation using the first-order 
upwind scheme, see Issan and Riley (2022) for more details about the numerical scheme and stability require-
ments. Figure 3e shows the coupling of PFSS, WSA, and HUX solar wind speed predictions in comparison to 
ACE's in situ observations for CR 2053, see Section 2.4.2 for more details about ACE. We set 𝐴𝐴 �̂�𝜃 to be ACE's mean 
latitude over a CR and obtain the inner boundary velocity profile by computing the magnetic field expansion and 
distance to the coronal hole at ACE's projected trajectory (which are inputs in the WSA model). The solar wind 
velocity at ACE's trajectory is obtained by linearly interpolating the two-dimensional HUX solution along ACE's 
trajectory.
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2.4. Observational Data

2.4.1. Global Oscillations Network Group (GONG) Synoptic Magnetograms

Deployed in 1995, the GONG synoptic magnetograms are produced every hour at GONG's six ground-based sites 
with identical telescopes. The six sites in California, Hawaii, Australia, India, Spain, and Chile, are distributed 
worldwide so that the Sun is visible at nearly all times. The line-of-sight full-disk GONG magnetograms are 
provided every minute by its main instrument known as Fourier Tachometer (Harvey et al., 1996; Hill, 2018). 
The magnetic field strength (measured in Gauss) is determined spectroscopically using the Zeeman effect. In 
the presence of a magnetic field, gas spectral lines split into two or more components, and the frequency of the 
spectral lines depends on the strength of the magnetic field (Moldwin, 2008).

In this study, we use the GONG full CR synoptic magnetograms as the photospheric radial magnetic field g(θ, ϕ) 
boundary condition for the PFSS model, see Equation 1, which are publicly available at National Solar Observa-
tory's website (https://gong.nso.edu). The synoptic maps are calibrated from roughly 8,000–10,000 input full-disk 
10-min average magnetograms (Hill, 2018) and are provided at 180 × 360 resolution in Carrington sin(colatitude) 
and Carrington longitude, respectively. These synoptic maps are obtained over a full CR and reasonably approx-
imate the solar conditions at quiet times of the cycle when the solar evolution is slow. Figure 3a above shows the 
GONG synoptic map for CR 2053.

2.4.2. Advanced Composition Explorer (ACE) In Situ Solar Wind Measurements

The NASA ACE satellite launched in 1997 is in Lissajous orbit around L1 (one of Earth-Sun gravitational equi-
librium points), located about 1.5 × 10 6 km forward of Earth. The location of ACE gives about 1-hr advance 
warning of the arrival of space weather events on Earth. The ACE instruments measure the solar wind, inter-
planetary magnetic field (IMF), and high-energy particles. This study uses the solar wind radial velocity in 
situ measurements provided by ACE's Solar Wind Electron Proton Alpha Monitor instrument (McComas 
et al., 1998). To download the radial velocity data and ACE's trajectory at a 1-hr cadence, we used HelioPy, a 
community-developed Python package (Stansby et al., 2021), for retrieving space physics data sets from NASA's 
Space Physics Data Facility website (https://cdaweb.gsfc.nasa.gov).

2.5. Model Chain Simulations

The PFSS → WSA → HUX model chain simulations are run on the Alfvén server at the University of Colorado 
SWx-TREC (Space Weather Technology, Research, and Education Center), which is equipped with 2x AMD 
EPYC 74F3 24-Core processors (3.2 GHz) and a total 2 Tb of RAM. The model chain takes about 16 s to simulate 
on one CPU. We profiled the model chain computations and found that 98% of the total time is spent solving the 
PFSS model and computing the distance to the coronal hole and magnetic expansion, 1.8% is spent on solving 
the HUX model and less than a percent is spent on evaluating the WSA model. The sensitivity analysis results 
required 3 × 1.3 × 10 5 = 3.9 × 10 5 simulations and the MCMC results required 10 × 250 × 2.6 × 10 4 = 6.5 × 10 7  
model simulations, that is, a total of approximately 10,400 CPU hours.

3. Global Sensitivity Analysis
Variance-based global sensitivity analysis aims to identify the parameters that contribute the most to a given QoI 
variability, which can be done quantitatively via computing Sobol' sensitivity indices (Sobol', 2001). Parame-
ters with high sensitivity indices are classified as influential, whereas parameters with low sensitivity indices 
are classified as non-influential. Computing Sobol' sensitivity indices facilitate a posteriori parameter dimen-
sionality reduction in subsequent inverse UQ tasks (such as Bayesian inference). This is established by setting 
non-influential parameters to their deterministic values and only considering parametric uncertainty stemming 
from influential parameters. Parametric dimensionality reduction is often necessary for computationally demand-
ing models and unbiased inverse UQ methods.

3.1. Uncertain Parameters

The PFSS → WSA → HUX model chain has many parameters that are uncertain, inducing uncertainty in the 
solar wind velocity forecasts near Earth. All uncertain parameters in the model chain are mainly non-physical. 

https://gong.nso.edu
https://cdaweb.gsfc.nasa.gov
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We identified a total of 11 uncertain continuous parameters: one parameter in PFSS (source surface height), eight 
parameters in WSA (numerical parameters), and two parameters in HUX (acceleration parameters). Table 1 lists 
the uncertain input parameters and their corresponding prior densities. We set all prior densities to be uniform 
with reasonable ranges determined in previous parametric studies by Lee et al. (2011, §2), Arden et al. (2014, 
§2.5), Meadors et al. (2020, Equation 9), Kumar and Srivastava (2022, Table 1), and Riley et al. (2015, Table 1).

The source surface radial height rSS in the PFSS model has intrinsic uncertainties since, in reality, it is 
non-spherical and is a function of space and time. Lowering the source surface results in more coronal holes, 
open flux, and strong curvature in the heliospheric current sheet, whereas raising the source surface height results 
in the opposite effect. Riley et al. (2006) suggested avoiding the strict constraint of a spherical source surface by 
a detailed comparison of PFSS to MHD models, and Kruse et al. (2020) altered the PFSS model to employ an 
oblate or prolate elliptical source surface. Arden et al. (2014) show that the source surface has a “breathing” effect 
of which the canonical 2.5RS source surface, originally suggested by Altschuler and Newkirk (1969), matches 
measured IMF open flux near Earth during solar maximum, yet extends up to 4RS during solar minimum of solar 
cycle 23 and the start of cycle 24. A similar study by Lee et al. (2011) found that setting the source surface to 
1.8RS matched best the IMF strength during the minimum of solar cycle 23. The optimal source surface heights 
determined in Arden et al. (2014) and Lee et al. (2011) do not agree and further emphasize the need for addi-
tional numerical investigation. Additionally, Lee et al. (2011, Figure 14) and Nikolić (2019, Figure 3) compared 
the PFSS coronal holes to observed extreme ultraviolet synoptic images, their results suggest 1.5–1.8RS for the 
source surface during CR 2060. Similar to our study, Meadors et al. (2020) also considers the source surface as an 
uncertain input parameter and learns its density via particle filtering and WIND spacecraft observations. Based 
on Lee et al. (2011, §2), Arden et al. (2014, §2.5), and Meadors et al. (2020, Equation 9), we allow the source 
surface to vary from 1.5RS to 4RS.

The eight numerical parameters of the WSA model, v0, v1, α, β, γ, δ, w, ψ, similar to the source surface, cannot 
be directly measured and are usually adjusted for different observatories, for example, Wilcox solar observato-
ries and GONG (Riley et al., 2015). Additionally, Riley et al. (2015) and Kumar and Srivastava (2022) showed 
that the optimal parameter can vary greatly from one CR to the next. It is, therefore, important to understand 
the uncertainties in the WSA parameters and their impact on predicted solar wind speed near Earth. We set  the 
eight parameter ranges based on previous parametric studies by Riley et  al.  (2015, Table 1) and Kumar and 
Srivastava (2022, Table 1).

The HUX model has two free parameters αacc and rh in the acceleration boost term, see Equation 4. Riley and 
Lionello (2011) suggest setting αacc = 0.15 and rh = 50RS. A recent study by Riley and Issan (2021) compared 
HUX to three-dimensional MHD velocity predictions and found the optimal αacc and rh via nonlinear least squares 

Parameter Model Description Prior range Deterministic value

rSS [RS] PFSS Source surface height [1.5, 4] 2.5

𝐴𝐴 𝐴𝐴0

[

km

s

]

 WSA Minimum velocity [200, 400] 250

𝐴𝐴 𝐴𝐴1

[

km

s

]

 WSA Maximum velocity [550, 950] 750

α WSA Numerical parameter [0.05, 0.5] 0.1

β WSA Numerical parameter [1, 1.75] 1

w [rad] WSA The width solar wind ramps up from low- to high-speed  
flow at coronal-hole boundaries

[0.01, 0.4] 0.02

γ WSA Numerical parameter [0.06, 0.9] 0.9

δ WSA Numerical parameter [1, 5] 1.75

ψ WSA Numerical parameter [3, 4] 3

αacc HUX Acceleration factor [0, 0.5] 0.15

rh [RS] HUX Radial location at which the acceleration ends [30, 60] 50

Table 1 
The Eleven Uncertain Continuous Parameters in the Potential Field Source Surface → Wang-Sheeley-Arge → Heliospheric Upwind EXtrapolation Model Chain 
Are Modeled With Uniform Priors With Physically Meaningful Ranges Taken From Previous Parametric Studies by Lee et al. (2011, §2), Arden et al. (2014, §2.5), 
Meadors et al. (2020, Equation 9), Kumar and Srivastava (2022, Table 1), and Riley et al. (2015, Table 1)
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optimization for a few CRs spanning from CR 2029 to CR 2231. They found that the average optimal αacc and rh 
are 0.16 and 52.6RS, respectively. Riley and Issan (2021) took a frequentist approach to find the optimal HUX 
parameters. In this study, we formulate the inference problem using the Bayesian approach, which provides a 
complete picture of parametric uncertainty in the form of a non-parametric posterior density. From this, one can 
compute any relevant estimates, such as the MAP, mode, etc. We allow the two HUX parameters to vary based 
on physically reasonable ranges specified in Table 1.

3.2. Sobol' Indices

To introduce the notion of global sensitivity indices, let 𝐴𝐴 (Ω, ,ℙ) be a probability space with sample space Ω, 
σ-algebra 𝐴𝐴  , and the probability measure 𝐴𝐴 ℙ , where 𝐴𝐴 𝐴𝐴 ∶ Ω →  is a random vector with its entries being inde-
pendent random variables Xi for i = 1, …d. We denote with x = X(ω) a sample (realization) of the random vector 
X for a given event ω ∈ Ω. From the independence assumption, the joint probability density function (pdf) π(x) 
is the product of the marginals, that is, π(x) = π1(x1)π2(x2)⋯πd(xd). We consider a generic model 𝐴𝐴 𝐴𝐴 ∶  →  that 
maps a d-dimensional input parameter 𝐴𝐴 𝐴𝐴 = [𝐴𝐴1, 𝐴𝐴2, . . . , 𝐴𝐴𝑑𝑑]

⊤
∈  ⊆ ℝ

𝑑𝑑 to a scalar QoI 𝐴𝐴 𝐴𝐴 ∈  ⊆ ℝ . We assume 
that f is square-integrable with respect to π, such that the expectation (mean) 𝐴𝐴 𝔼𝔼[𝑓𝑓 (𝑋𝑋)] = ∫

ℝ𝑑𝑑 𝑓𝑓 (𝑥𝑥)𝜋𝜋(𝑥𝑥)d𝑥𝑥 and 
variance 𝐴𝐴 𝕍𝕍ar[𝑓𝑓 (𝑋𝑋)] = ∫

ℝ𝑑𝑑 (𝑓𝑓 (𝑥𝑥) − 𝔼𝔼[𝑓𝑓 (𝑥𝑥)])
2
𝜋𝜋(𝑥𝑥)d𝑥𝑥 of the QoI are both finite.

Definition 1 (Sobol' Indices) The first-order Sobol' sensitivity indices measure the main variance contribution due 
to the ith random input parameter, such that

𝑆𝑆𝑖𝑖 ∶=
𝕍𝕍ar𝑋𝑋𝑖𝑖

[

𝔼𝔼𝑋𝑋∼𝑖𝑖
(𝑓𝑓 (𝑋𝑋)|𝑋𝑋𝑖𝑖)

]

𝕍𝕍ar[𝑓𝑓 (𝑋𝑋)]
, 𝑖𝑖 = 1, . . . , 𝑑𝑑, (5)

where 𝐴𝐴 𝕍𝕍ar𝑋𝑋𝑖𝑖
 denotes the variance with respect to only the Xi random input parameter, 𝐴𝐴 𝕍𝕍ar without subscript 

denotes variance involving all parameters, and X∼i denotes all random input parameters but Xi. The second-order 
Sobol' sensitivity indices measure the secondary variance contribution due to the interaction of the ith and jth 
parameters (where i ≠ j), such that

𝑆𝑆𝑖𝑖𝑖𝑖 ; =
𝕍𝕍ar𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖

[

𝔼𝔼𝑋𝑋∼𝑖𝑖,𝑖𝑖
(𝑓𝑓 (𝑋𝑋)|𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖)

]

𝕍𝕍ar[𝑓𝑓 (𝑋𝑋)]
− 𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑖𝑖. 

The total-order Sobol' sensitivity indices measure the total variance contributions of the ith parameter, such that

𝑇𝑇𝑖𝑖; = 𝑆𝑆𝑖𝑖 +

𝑑𝑑
∑

𝑗𝑗=1

𝑆𝑆𝑖𝑖𝑗𝑗 + H.O.T. = 1 −
𝕍𝕍ar𝑋𝑋∼𝑖𝑖

[

𝔼𝔼𝑋𝑋𝑖𝑖
(𝑓𝑓 (𝑋𝑋)|𝑋𝑋∼𝑖𝑖)

]

𝕍𝕍ar[𝑓𝑓 (𝑋𝑋)]
=

𝔼𝔼𝑋𝑋∼𝑖𝑖

[

𝕍𝕍ar𝑋𝑋𝑖𝑖
(𝑓𝑓 (𝑋𝑋)|𝑋𝑋∼𝑖𝑖)

]

𝕍𝕍ar[𝑓𝑓 (𝑋𝑋)]
, (6)

where H.O.T. refers to higher-order terms. The first, second, and higher-order indices sum up to 1, such that

𝑑𝑑
∑

𝑖𝑖=1

𝑆𝑆𝑖𝑖 +

𝑑𝑑
∑

𝑖𝑖=1

𝑑𝑑
∑

𝑗𝑗=2,𝑗𝑗𝑗𝑖𝑖

𝑆𝑆𝑖𝑖𝑗𝑗 +⋯ + 𝑆𝑆12. . .𝑑𝑑 = 1. 

Notice that if the total-order index Ti ≈ 0, then 𝐴𝐴 𝔼𝔼𝑋𝑋∼𝑖𝑖

[

𝕍𝕍ar𝑋𝑋𝑖𝑖
(𝑓𝑓 (𝑋𝑋)|𝑋𝑋∼𝑖𝑖)

]

≈ 0 , which, by the non-negativity of the 
variance operator, implies that 𝐴𝐴 𝕍𝕍ar𝑋𝑋𝑖𝑖

(𝑓𝑓 (𝑋𝑋)|𝑋𝑋∼𝑖𝑖) ≈ 0 . Therefore, if Ti ≈ 0, the uncertainty in Xi hardly influences 
the variance of the QoI, and Xi can be deemed as non-influential.

Sobol' sensitivity indices cannot be computed in closed form except for QoIs that are integrable with respect to 
π(x) (the joint probability of the uncertain parameters X). Appendix A shows that the sensitivity indices can be 
computed analytically for the simple Wang-Sheeley model (Wang & Sheeley, 1990). However, the QoI that we 
consider (like most model QoIs arising from simulations of complex systems) is not integrable with respect to 
π(x). Thus, we need to approximate the indices numerically.

3.3. Estimating Sobol' Indices via Monte Carlo Integration

The first- and total-order Sobol' sensitivity indices described in Equations 5 and 6 can be estimated via MC inte-
gration, which requires N(d + 2) model evaluations, where N is the number of independent samples of X and d 
is the number of uncertain parameters. Since each model evaluation is independent of the other, the MC model 
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evaluations can be easily computed in parallel. The four-step algorithm of Saltelli  (2002), which is based on 
Sobol' (2001) original work, is implemented as follows:

1.  Draw 2N quasi-random samples of the random vector X and store them as

𝐴𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑥
(1)

1
. . . 𝑥𝑥

(1)

𝑑𝑑

⋮ ⋮

𝑥𝑥
(𝑁𝑁)

1
. . . 𝑥𝑥

(𝑁𝑁)

𝑑𝑑

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ
𝑁𝑁×𝑑𝑑

and 𝐵𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑥
(𝑁𝑁+1)

1
. . . 𝑥𝑥

(𝑁𝑁+1)

𝑑𝑑

⋮ ⋮

𝑥𝑥
(2𝑁𝑁)

1
. . . 𝑥𝑥

(2𝑁𝑁)

𝑑𝑑

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ
𝑁𝑁×𝑑𝑑 , 

 where 𝐴𝐴 𝐴𝐴
(𝑗𝑗)

𝑖𝑖
 denotes the ith entry and jth sample of X. Quasi-MC methods generate near-random samples that 

aim to distribute well over the parameter space. These sampling strategies usually result in a faster rate of 
convergence in MC integration. We use Latin hypercube sampling developed by McKay et al. (1979). Other 
common quasi-random low-discrepancy sequences are Sobol' (Sobol', 1967) and Halton (Halton, 1960).

2.  Define matrices C (i) for i = 1, 2, …, d, which are a copy of B except the ith column is replaced by A(:, i), the 
ith column of A, so that

𝐶𝐶 (𝑖𝑖)
=

⎡

⎢

⎢

⎢

⎢

⎣

| | |

𝐵𝐵(∶, 1) . . . 𝐴𝐴(∶, 𝑖𝑖) . . . 𝐵𝐵(∶, 𝑑𝑑)

| | |

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ
𝑁𝑁×𝑑𝑑 , 𝑖𝑖 = 1, . . . , 𝑑𝑑𝑑 

3.  Evaluate the QoI for each row of the matrices A, B, C (i), denoted as A(j, :), B(j, :), C (i)(j, :), that is,

𝑦𝑦
(𝑗𝑗)

𝐴𝐴
= 𝑓𝑓 (𝐴𝐴(𝑗𝑗𝑗 ∶)) ∈ ℝ𝑗 𝑦𝑦

(𝑗𝑗)

𝐵𝐵
= 𝑓𝑓 (𝐵𝐵(𝑗𝑗𝑗 ∶)) ∈ ℝ and 𝑦𝑦

(𝑗𝑗)

𝐶𝐶(𝑖𝑖)
= 𝑓𝑓

(

𝐶𝐶 (𝑖𝑖)
(𝑗𝑗𝑗 ∶)

)

∈ ℝ𝑗 

 for j = 1, …, N. The evaluation of yA and yB requires 2N model evaluations, whereas the evaluation of 𝐴𝐴 𝐴𝐴𝐶𝐶(𝑖𝑖) 
requires d ⋅ N model evaluations, which results in a total of N(d + 2) model evaluations.

4.  Estimate using MC integration the first-order Si and total-order Ti sensitivity indices for i = 1, …, d. We use 
the unbiased Janon/Monod's estimator (Janon et al., 2014; Monod et al., 2006), such that

𝑆𝑆𝑖𝑖 ≈

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1
𝑦𝑦
(𝑗𝑗)

𝐴𝐴
𝑦𝑦
(𝑗𝑗)

𝐶𝐶(𝑖𝑖)
−

(

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1
𝑦𝑦
(𝑗𝑗)

𝐴𝐴

)(

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1
𝑦𝑦
(𝑗𝑗)

𝐶𝐶(𝑖𝑖)

)

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1

(

𝑦𝑦
(𝑗𝑗)

𝐴𝐴

)2

−

(

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1
𝑦𝑦
(𝑗𝑗)

𝐴𝐴

)2
,

𝑇𝑇𝑖𝑖 ≈ 1 −

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1
𝑦𝑦
(𝑗𝑗)

𝐵𝐵
𝑦𝑦
(𝑗𝑗)

𝐶𝐶(𝑖𝑖)
−

(

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1

(

𝑦𝑦
(𝑗𝑗)

𝐵𝐵
+𝑦𝑦

(𝑗𝑗)

𝐶𝐶(𝑖𝑖)

2

))2

1

2𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1

(

(

𝑦𝑦
(𝑗𝑗)

𝐵𝐵

)2

+

(

𝑦𝑦
(𝑗𝑗)

𝐶𝐶(𝑖𝑖)

)2
)

−

(

1

𝑁𝑁

∑𝑁𝑁

𝑗𝑗=1

(

𝑦𝑦
(𝑗𝑗)

𝐵𝐵
+𝑦𝑦

(𝑗𝑗)

𝐶𝐶(𝑖𝑖)

2

))2
.

 

The algorithm intuition can be explained as follows. The first-order sensitivity estimation is based on the product 
of yA and 𝐴𝐴 𝐴𝐴𝐶𝐶(𝑖𝑖) , which multiplies the QoI with input A and the QoI with input C (i) where all parameters except Xi 
have been re-sampled. Intuitively, if Xi is influential then yA and 𝐴𝐴 𝐴𝐴𝐶𝐶(𝑖𝑖) are correlated and Si is large. We can intuit 
the estimation of the total-order indices Ti in a similar way. The product of yB and 𝐴𝐴 𝐴𝐴𝐶𝐶(𝑖𝑖) multiplies the QoI with 
input B and the QoI with input C (i) where we only re-sample Xi. Thus, if Xi is influential then yB and 𝐴𝐴 𝐴𝐴𝐶𝐶(𝑖𝑖) are not 
correlated and Ti is large.

There are many other MC Sobol' sensitivity indices estimators, see Puy et  al.  (2022) for a comprehensive 
comparison. Saltelli's (Saltelli, 2002) and Jansen's (Jansen, 1999) estimators are also commonly used estimators. 
Such estimators require N(d + 2) model evaluations to compute the first and total-order indices. Computing 
second-order indices requires additional model evaluation, that is, a total of N(2d + 2) model evaluations. We 
thus only compute first and total-order indices, which give a strong indication if a parameter is influential or not. 
We compared Saltelli's, Jansen's, and Janon/Monod's estimators and found that Janon/Monod's estimator resulted 
in faster convergence for our study.
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3.4. Global Sensitivity Analysis Numerical Results

We perform global sensitivity analysis using the PFSS → WSA → HUX model chain for CR 2048 (21 September 
2006 to 18 October 2006), CR 2053 (4 February 2007 to 4 March 2007), and CR 2058 (21 June 2007 to 18 July 
2007). The three CRs occurred during the declining phase of solar cycle 23. The 11 model input parameters are 
listed in Table 1 and are described in Section 3.1. We use N = 10 4 Latin Hypercube samples (McKay et al., 1979) 
to estimate the Sobol' sensitivity indices via MC integration (Section 3.3), which requires N(d + 2) = 1.3 × 10 5 
model evaluations for each CR. We consider two QoIs: the root mean squared error (RMSE) between ACE veloc-
ity measurements and the model predictions at L1 and longitude-dependent model predictions at L1 (independent 
of ACE observations). The results are discussed in the following subsections.

3.4.1. Sobol' Indices for RMSE

The QoI f(X) for which we compute the Sobol' sensitivity indices is the RMSE between the model chain solar 
wind radial velocity prediction at L1 and ACE at 1-hr cadence observations. Figure  4 shows the total-order 
indices for CR 2048, CR 2053, and CR 2058. The total-order indices for all three CRs have the same ordering 
for the five most influential parameters, that is, β, γ, α, v1, w (listed in descending order). The five most influ-
ential parameters are all WSA model parameters. The other six parameters rSS, ψ, v0, δ, rh, αacc are deemed as 
non-influential since their total-order indices are less than 0.05. We also estimate the uncertainty in the estimated 
total-order indices by using bootstrapping with N = 3 × 10 3 samples and 100 replications. The box plots for each 
index are shown in Figure 4. The uncertainty in the estimated total-order indices does not influence the classi-
fication between influential and non-influential parameters. The total-order indices show that six out of the 11 
uncertain parameters are non-influential, and subsequently, they hardly contribute to the predicted solar wind 
radial velocity variability at L1. We, therefore, set the six non-influential parameters to their fixed deterministic 
values (see Table 1) in the subsequent Bayesian inference, which facilitates a posteriori dimensionality reduction 
and significant computational speed up for performing MCMC.

Figure 4. The total-order indices Ti of the root mean squared error between the model chain and Advanced Composition 
Explorer observations are shown for (a) CR 2048, (b) CR 2053, and (c) CR 2058. The box plot for each index shows the 
uncertainty in the index estimate using bootstrapping with N = 3 × 10 3 samples and 100 replications. The box plots display 
the range between the first and third quartiles, with a middle line indicating the median. The whiskers represent the span from 
the minimum to maximum estimates. The results show that rSS, ψ, δ, v0, rh, αacc are non-influential as their total-order indices 
are lower than 0.05 (shown in dashed black horizontal line).
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Figure  5a shows an ensemble of the global sensitivity analysis model evaluations for CR 2053. We plot the 
median and 50% and 95% credible interval of the 1.3 × 10 5 model evaluations used to compute the sensitivity 
indices (which were constructed via prior density samples). A credible interval is an interval within which the 
ensemble members fall with a particular probability. The 95% credible interval shown in Figure 5a spans an 
excessively large range and includes non-physical solutions (e.g., solar wind radial velocity at 𝐴𝐴 1800

km

s
 ). This is 

because the uncertainties in the model chain parameters highly influence the solar wind velocity predictions at 
L1. We aim to reduce such large parametric uncertainties via Bayesian inference; see Section 4. Figures 5b and 5c 
show histograms of the RMSE and Pearson correlation coefficient (PCC) between the global sensitivity analy-
sis simulations in comparison to ACE observations for CR 2053. The histograms show that the RMSE mean is 

𝐴𝐴 217.2
km

s
 and the PCC mean is 0.5. Also, the RMSE MAP is 𝐴𝐴 101.5

km

s
 and the PCC MAP is 0.71. By reducing the 

uncertainty in the model parameters, we expect the ensemble to be more accurate (Smith, 2013, §8.1).

3.4.2. Longitude-Dependent Sobol' Indices

We define longitude-dependent (or time-dependent) QoI, which is the solar wind radial velocity predictions at 
L1 at a 1-hr cadence. In contrast to the RMSE indices, defined in Section 3.4.1, the longitude-dependent QoI is 
independent of ACE observations. Figure 6 presents the seven largest first-order Si and total-order Ti indices as a 
function of Carrington longitude for CR 2048, CR 2053, and CR 2058. We do not plot the first- and total-order 
indices of ψ, δ, αacc, rh since their maximum indices (in longitude) are less than 0.05. The five most influential 
parameters during all three CRs are β, γ, α, v1, w, which agree with the RMSE indices results, see Figure 4. The 
first-order indices are significantly smaller than the total-order indices, which indicates that higher-order interac-
tions between parameters influence the predicted solar wind velocity variability. Additionally, the influence of w, 
the width over which the solar wind ramps up from low- to high-speed flow at coronal-hole boundaries, is mainly 
around a small longitudinal region. For example, during CR 2053, w is only influential from approximately 190° 
to 280°. We suspect this is because ACE's footpoints lie closer to the center of a low-latitude coronal hole at 
approximately 250°–310°, see Figure 3d. The large distance to coronal hole boundary d corresponds to high solar 
wind speed in this region, which is then advected to 190°–280° at L1 (at 𝐴𝐴

1

𝑣𝑣
 speed, see Equation 3). Thus, w seems 

to be influential only in regions where d, DCHB, in the WSA relation is large. Similarly, the influence of α seems 
to be correlated to fp, for example, when fp is low at approximately 220°–300° in longitude during CR 2053, see 
Figure 3c, we see a decrease in the total-order index of α, see Figure 6b.

4. Bayesian Inference via Markov Chain Monte Carlo Sampling
After identifying the set of influential parameters via variance-based global sensitivity analysis, our goal is to 
learn the uncertainties of such influential parameters, which we achieve through Bayesian inference. Bayesian 
parameter estimation leverages Bayes' theorem to learn the pdf of uncertain model parameters given observational 

Figure 5. (a) Ensemble generated from prior samples of the global sensitivity analysis model evaluations for CR 2053. The 
credible interval shows that parametric uncertainty in the model chain results in very high uncertainty in the solar wind radial 
velocity predictions at L1. A histogram of the ensemble root mean squared error and Pearson correlation coefficient are 
shown in (b, c), respectively.
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data. Samples from such pdfs can be directly obtained using MCMC algorithms. These samples are then used to 
generate an ensemble prediction to quantify and reduce the effect of the parametric uncertainty on the QoI. The 
following subsections introduce Bayesian inference and MCMC sampling.

4.1. Bayesian Parameter Estimation

The philosophy behind Bayesian statistics is that the model parameters are random variables with an unknown 
pdf. This differs from the frequentist perspective, where the parameters are assumed deterministic but unknown. 
In the Bayesian setting, we seek to estimate the pdf of model influential parameters X given a parameter-dependent 
QoI f(⋅) (e.g., solar wind radial velocity at L1) and measurements of the QoI z = {z1, z2, …, zn} (e.g., ACE radial 
velocity measurements) taken at time instances t1 < t2 < … < tn (e.g., at a 1-hr cadence). In other words, we aim to 
estimate the conditional pdf π(x|z), which is referred to as the posterior density or simply posterior. The posterior 
density can be evaluated via Bayes' rule:

𝜋𝜋(𝑥𝑥|𝑧𝑧) =
𝜋𝜋(𝑧𝑧|𝑥𝑥)𝜋𝜋(𝑥𝑥)

𝜋𝜋(𝑧𝑧)
=

𝜋𝜋(𝑧𝑧|𝑥𝑥)𝜋𝜋(𝑥𝑥)

∫
ℝ𝑑𝑑 𝜋𝜋(𝑧𝑧|𝑥𝑥)𝜋𝜋(𝑥𝑥)d𝑥𝑥

∝ 𝜋𝜋(𝑧𝑧|𝑥𝑥)𝜋𝜋(𝑥𝑥), 

where π(x) is the prior, π(z|x) is the likelihood, and π(z) is the evidence (also referred to as the marginal likeli-
hood or normalizing constant). The parameters x are samples of the random variable X, and the observations zi 
are samples of the random variable Zi. Most often, the evidence cannot be properly defined, so we estimate the 
posterior up to a normalizing constant. The posterior density can be continuously refined as more measurements 
are included.

The prior density π(x) is chosen based on physically meaningful ranges and previous studies in the literature; 
see Table 1 for the list of the uniform prior densities used in this study. Generally, the priors are not restricted to 
uniform densities and may weigh favorable values more heavily. However, if prior knowledge is of questionable 
accuracy, it is better to use non-informative priors (Smith, 2013, §8.1).

We assume that the QoI of the model and measurements are related via

𝑍𝑍𝑖𝑖 = 𝑓𝑓 (𝑋𝑋; 𝑡𝑡𝑖𝑖) + 𝜖𝜖𝑖𝑖, 𝑖𝑖 = 1, . . . , 𝑛𝑛, (7)

where Zi is a random variable representing the measurements at time instance ti, f(X; ti) is the QoI at time instance 
ti and ϵi is a random variable representing the discrepancies between the QoI and measurements. Here, we 
model ϵi as a Gaussian random variable with zero mean and standard deviation 𝐴𝐴 𝐴𝐴 ∈ ℝ+ . We note that the model 

Figure 6. Longitude-dependent (top) first-order Si and (bottom) total-order indices Ti for (a) CR 2048, (b) CR 2053, and (c) 
CR 2058. We do not plot the indices of ψ, δ, αacc, rh since their maximum first-order and total-order indices (in longitude) 
are less than 0.05. The parameters β, γ, α, v1 are the most influential across all longitudinal locations, whereas w seems to be 
more longitudinal (or time) dependent. For example, during CR 2048, w is only influential from approximately 280° to 360° 
in longitude.
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discrepancies and measurement noise are modeled as additive and mutually independent of X. Thus, by the 
assumption of Gaussian additive error and independence of measurements, we can write the likelihood as

𝜋𝜋(𝑧𝑧|𝑥𝑥) =

𝑛𝑛
∏

𝑖𝑖=1

1
√

2𝜋𝜋𝜋𝜋2

exp

(

−
1

2𝜋𝜋2
[𝑧𝑧𝑖𝑖 − 𝑓𝑓 (𝑥𝑥; 𝑡𝑡𝑖𝑖)]

2

)

∝ exp

(

−
1

2𝜋𝜋2

𝑛𝑛
∑

𝑖𝑖=1

[𝑧𝑧𝑖𝑖 − 𝑓𝑓 (𝑥𝑥; 𝑡𝑡𝑖𝑖)]
2

)

. 

Although we derived an expression for the prior and likelihood densities, we cannot directly sample from the 
posterior density since the evidence (or normalizing constant) remains unknown. To overcome this issue, MCMC 
algorithms enable sampling from arbitrary pdfs and allow for the unbiased estimation of the posterior density, 
mean, and variance.

4.2. Markov Chain Monte Carlo Sampling

MCMC algorithms generate samples from an arbitrary target pdf (such as posterior pdf) by generating a random 
walk in the parameter space that draws a representative set of samples from the target pdf. The random walk is a 
Markov chain, with the property that each sample only depends on the position of the previous sample. MCMC 
algorithms converge to the exact target pdf as the number of samples increases. This convergence property is 
established by the ergodicity property of MCMC, which requires the Markov chain to be aperiodic, irreducible, 
and reversible with respect to the target pdf (Roberts & Rosenthal, 2004).

The first and most frequently used MCMC algorithm is the Metropolis-Hastings algorithm (Hastings,  1970; 
Metropolis et  al.,  1953) developed at Los Alamos National Laboratory. The Metropolis–Hastings algorithm 
generates samples from an arbitrary pdf iteratively. The samples are drawn from a proposal density which is 
chosen a priori and depends on the position of the previous sample of the Markov chain. A proposed sample is 
then accepted or rejected with some probability. If accepted, the proposed sample is appended to the Markov 
chain and used to generate the next sample; otherwise, if rejected, the proposed sample is discarded, and the 
previous sample is appended to the Markov chain. A common choice of proposal density is the Gaussian distri-
bution centered at the previous sample location.

We employ the AIES developed by (Goodman & Weare, 2010), which we describe in detail in Appendix B. 
The AIES offers several advantages over the Metropolis-Hastings algorithm. First, AIES has only two hyperpa-
rameters, while Metropolis-Hastings has approximately d 2 hyperparameters, where d represents the number of 
uncertain parameters. Second, AIES remains invariant to affine transformations, enabling easy sampling from 
anisotropic pdfs. Finally, AIES can be run in parallel, leading to considerably faster convergence (measured by 
the integrated autocorrelation time (IAT), see Appendix B) compared to the single-chain Metropolis-Hastings 
algorithm. We also elaborate in Appendix B on MCMC burn-in and convergence assessment which are important 
heuristics that verify the Markov chain has reached a stationary distribution.

4.3. Markov Chain Monte Carlo Numerical Results

We use the AIES sampler (described in Appendix B) to uncover the posterior density of the five most influen-
tial parameters β, γ, α, v1, w, for CR 2048 to CR 2058 (spanning from 21 September 2006 to 18 July 2007). We 
performed the computationally expensive global sensitivity analysis for CR 2048, CR 2053, and CR 2058, and 
assume the results hold for the whole time period between CR 2048 to CR 2058. We exclude CR 2051 since, 
during this time period, three CMEs reached L1, and the PFSS → WSA → HUX model chain does not account for 
transient events such as CMEs. We assume in Equation 7 that the model chain solar wind radial velocity predic-
tions at L1 and ACE measurements (at 1-hr cadence) are related via Gaussian error with mean zero and standard 
deviation 𝐴𝐴 𝐴𝐴 = 80

km

s
 . The standard deviation is chosen from previous parametric studies by Reiss et al.  (2020, 

Table 1) and Kumar and Srivastava (2022, Figure 8). The posteriors are approximated with 2.6 × 10 4 MCMC 
iterations, 10 3 iterations excluded for burn-in, and L = 250 walkers, resulting in M = 6.25 × 10 6 MCMC posterior 
samples per CR.

4.3.1. Markov Chain Monte Carlo Posterior Densities

The posterior densities for CR 2052 and CR 2053 in one- and two-dimensional projected parameter space are 
shown in Figure 7. It is apparent that the marginal posterior of v1 is uniformly distributed (resembling the prior 
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density in Table 1), meaning that v1 is highly uncertain and can take any value in the prior range with equal 
probability. This means that the likelihood function is flat in the v1 direction, that is, v1 may not be identifiable 
from ACE observations. The corner plot shows that β and v1 are negatively correlated. Note that the marginal 
posteriors of parameters α and β have little to no support overlap in CR 2052 and CR 2053. This suggests that 
such parameters are difficult to predict in advance.

The marginal posterior densities for CR 2048 to CR 2058 (excluding CR 2051) are shown in Figure 8, which 
indicates that the posterior densities evolve from one CR to the next in a non-predictable fashion. For example, 
the marginalized posterior of α has relatively small support that varies randomly from one CR to the next. We 
also notice that the MAP, shown in dashed vertical lines, changes greatly from one CR to the next, which agrees 
with the previous parametric studies by Kumar and Srivastava (2022) and Riley et al. (2015). Since the posterior 
densities vary greatly from one CR to the next, it is not possible to use the posterior samples from a given CR 
to create an accurate ensemble prediction of the next CR (in contrast to the adaptive-WSA method proposed by 
Reiss et al. (2020)). If the model chain is used for re-analysis studies, we recommend using the proposed UQ 
framework to generate accurate ensembles. The ensembles generated from the MCMC posterior samples will be 
highly accurate as the parameter posteriors are learned using observational data at L1 and will also be able to 

Figure 7. A corner plot of the posterior density of the five most influential parameters v1, α, β, w, γ during CR 2052 (blue) and CR 2053 (red). The corner plot shows 
the Markov chain Monte Carlo samples in two-dimensional and one-dimensional projected parameter space. The dashed line shows the estimated MAP of each 
parameter.
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successfully capture the parametric uncertainty on the predictions. The next subsection discusses our ensemble 
prediction numerical results.

4.3.2. Ensemble Prediction

We generate an ensemble prediction based on varying model parameters using MCMC posterior samples. The 
ensemble members are then used to compute ensemble statistics, such as the ensemble median and prediction 
interval. The prediction interval accounts for both the propagated parametric uncertainty and assumed model 
discrepancy errors (Smith, 2013, §9.4.3). The (1 − α) × 100% prediction interval for a fixed but unknown new 
observation Zi at time instance ti is the interval [Zl, Zu] such that

ℙ(𝑍𝑍𝑙𝑙 ≤ 𝑍𝑍𝑖𝑖 ≤ 𝑍𝑍𝑢𝑢) = 1 − 𝛼𝛼𝛼 

where Zi is independent of the data used to construct the random variables Zl and Zu (Smith, 2013, §9.4.1). We 
estimate the interval [Zl, Zu] via computing the α/2th and 1 − α/2th quantiles of the set of ensemble members 
with added Gaussian model discrepancy errors. In general, one should be cautious when assessing the ensemble 
prediction via quantiles when the posterior predictive density, defined as π(Zi|Z), is multimodal. We have checked 
that the computed posterior predictive density is indeed unimodal for CR 2052 and CR 2053 (not shown here). 

Figure 8. The marginal posterior densities of the five most influential parameters v1, α, β, w, γ from CR 2048 to CR 2058 (excluding CR 2051). The solid line shows 
the estimated maximum a posteriori of each parameter. The marginal posteriors change substantially from one CR to the next.
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Figures 9a and 10a show the median and 50% and 95% prediction interval of the 5 × 10 3 ensemble members 
during CR 2053 and CR 2052, respectively. The ensemble is generated using posterior samples trained separately 
on each CR. Figures 9b and 10b show a histogram of the RMSE of the ensemble members for each CR. Figures 9c 
and 10c show a histogram of the PCC of the ensemble members for each CR. By comparing Figures 5b and 5c 
to Figures 9b and 9c, it is apparent that the ensemble generated from the posterior density is able to substantially 
reduce the parametric uncertainty and improve the accuracy of the ensemble prediction. Specifically, the mean 
RMSE is reduced from 𝐴𝐴 217.2

km

s
 to 𝐴𝐴 55.7

km

s
 , and the mean PCC is increased from 0.5 to 0.88. The results show that 

the proposed UQ framework is able to successfully reduce the uncertainty of the model parameters on the solar 
wind radial velocity prediction and should be utilized in further re-analysis studies.

Figures 9a and 10a also show the model prediction with all parameters set to their deterministic values listed in 
Table 1, which we label as “deterministic estimate.” The figures show that in both time periods, CR2052 and 
CR2053, the ensemble prediction after UQ is substantially more accurate than the deterministic estimate before 
UQ. In particular, the deterministic estimate underestimated the solar wind velocity in both time periods. For 
a more quantitative comparison, Table 2 lists the RMSE and PCC of ACE observations in comparison to the 
ensemble mean and deterministic estimate during CR2052 and CR2053. The numerical results show that the 
ensemble mean RMSE is nearly 50% smaller than the deterministic estimate RMSE for both time periods. Thus, 
the proposed UQ framework is also able to substantially improve the accuracy of the model's solar wind radial 
velocity predictions at L1.

Figure 9. (a) Ensemble prediction with 5 × 10 3 ensemble members generated from posterior samples for CR 2053. The 
figure shows the ensemble statistics (median and prediction intervals), a model chain prediction when all parameters are set 
to their deterministic values (from Table 1), which we label as “deterministic estimate,” and Advanced Composition Explorer 
(ACE) observations. Panels (b, c) show the root mean squared error and Pearson correlation coefficient of the ensemble in 
comparison to ACE observations, respectively.

Figure 10. Same as Figure 9 for CR 2052.
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5. Conclusions and Discussion
The PFSS → WSA → HUX model chain is commonly used to predict the 
ambient solar wind radial velocity near Earth. The model chain has 11 uncer-
tain input parameters that cannot be directly measured since they are mainly 
non-physical. We, therefore, propose a comprehensive UQ framework for 
quantifying and reducing the parametric uncertainty of the model chain. 
The proposed framework utilizes variance-based global sensitivity analysis 
to reduce the dimensionality of the parameter space, followed by Bayesian 
inference to learn the full parameter pdfs via MCMC. We apply the UQ 
framework on a time period spanning from CR 2048 to CR 2058 during the 
declining phase of solar cycle 23. The sensitivity analysis results show that β, 
γ, α, v1, w are the five most influential parameters in the model chain. These 
parameters are all WSA parameters. We learned the posterior densities of 
the five most influential parameters using AIES (an MCMC sampler). The 

posterior samples are then used to generate an ensemble prediction and quantify the parametric uncertainty in the 
predicted solar wind velocity. We found that the ensemble results are able to accurately quantify the uncertainty 
in the predictions and thus suggest the proposed UQ framework should be utilized in further re-analysis studies 
employing the model chain.

The Bayesian inference numerical results also show that the posterior densities vary randomly from one CR to 
the next. This is mainly due to the following reasons: (a) the model chain is not robust to the choice of WSA 
numerical parameters and (b) the WSA model is overparameterized (i.e., needs to be reformulated for forecasting 
purposes). The reformulation of the WSA model will involve searching for a parsimonious model that is robust 
to its choice of parameters. Candidates of models that balance the trade-off between accuracy and parsimony 
can be found using sparse regression techniques with different regularization (Brunton et al., 2016). The optimal 
model can later be selected via the Bayesian or Akaike information criterion (Akaike, 1974; Schwarz, 1978). The 
substantial and unpredictable change in the posterior densities from one CR to the next questions the applicability 
of the model chain in operational real-time forecasting.

We suspect the drastic changes in the posterior densities are also due to the parameters trying to overcompensate 
the intrinsic and “hard-wired” limitations of each of the models (i.e., biases due to epistemic uncertainties). We 
next discuss such limitations. First, we do not have an accurate estimate of the photospheric fields (Poduval 
et al., 2020). There are differences between magnetograms from different observatories. There are also different 
saturation levels and noise (Riley et al., 2014). Second, the PFSS solutions rely on the existence of a spherical 
source surface, which does not exist (Riley et al., 2006). The sensitivity analysis results show that the choice 
of the source surface height is non-influential on the predicted solar wind velocity at L1, yet in the analysis we 
assume it exists. Also, the fields are not potential, particularly around active regions. Third, the WSA model has 
known inaccuracies, for example, the expansion factor in the vicinity of pseudostreamers (Riley et al., 2015), as 
well as unknown inaccuracies. Fourth, the HUX model assumes only radial propagation and neglects external 
forces and the pressure gradient (Riley & Lionello, 2011). Fifth, time dependence is not included in synoptic 
maps and all throughout the model chain. Thus, the physics simplifications in the model chain introduce model 
discrepancies between the spacecraft observations and model predictions. We assume such discrepancies are 
Gaussian distributed in the Bayesian inference setup. This is generally a reasonable assumption, which is neces-
sary in order to formulate the likelihood in the Bayesian setting, yet it is important to point out that the model 
chain discrepancies are structured and are not i.i.d.

Future studies can incorporate the proposed UQ framework for learning the posterior densities of uncertain 
parameters for various (and more complex) space weather models, for example, the WSA-Enlil model (Parsons 
et al., 2011). It will be interesting to apply the proposed UQ framework to WSA-Enlil to make sure the WSA 
posteriors do not change drastically in time and verify that the WSA-Enlil model is reliable for real-time 
forecasting. Depending on the computational resources and computational complexity of the model at hand, 
one might need to incorporate surrogate models (computationally efficient approximate models), such as 
projection-based reduced-order models (Benner et al., 2015; Issan & Kramer, 2022) and interpolatory surrogates 
(Xiu & Karniadakis, 2002), to compute Sobol' sensitivity indices and run MCMC. If the model is computa-
tionally efficient (i.e., order of seconds/minutes) we recommend using the MC methods presented in this study 

RMSE 𝐴𝐴

(

km

s

)

PCC

CR2052 Ensemble mean 45.0 0.93

Deterministic estimate 115.6 0.73

CR2053 Ensemble mean 55.7 0.88

Deterministic estimate 97.7 0.86

Table 2 
The Root Mean Squared Error and Pearson Correlation Coefficient of 
Advanced Composition Explorer Observations in Comparison to the Model 
Chain Prediction With All Parameters Set to Their Deterministic Values 
Before Uncertainty Quantification (UQ) (See Table 1) Versus the Ensemble 
Mean After UQ During CR2052 and CR2053
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as they are unbiased estimators. Other unbiased estimators include multi-fidelity estimators, see Peherstorfer 
et al. (2018) for a detailed survey.

Appendix A: Global Sensitivity Analysis of the Wang-Sheeley Model: Analytic 
Results
The Wang-Sheeley (WS) semi-empirical model developed by Wang and Sheeley (1990) is based on the inverse 
relationship between the solar wind speed and the magnetic field expansion factor fp (defined in Equation 2). The 
WS model relation is given by

𝑣𝑣ws(𝑓𝑓𝑝𝑝, 𝑣𝑣0, 𝑣𝑣1, 𝛼𝛼) = 𝑣𝑣0 +
𝑣𝑣1 − 𝑣𝑣0

𝑓𝑓𝛼𝛼
𝑝𝑝

 

where v0 and v1 correspond to the minimum and maximum solar wind velocities, fp is the magnetic field expan-
sion factor, and α is an additional numerical parameter.

The Sobol' sensitivity indices described in Equations 5 and 6 for the WS model parameters v0, v1, α can be 
computed analytically (symbolically) if we assume the model parameters are independent and have uniform 
priors. In contrast, for the PFSS, WSA, and HUX models, the sensitivity indices can only be approximated 
numerically via MC integration, see Section 3.3. We set the priors to be uniform with ranges listed in Table 1. 
Table A1 shows the Sobol' sensitivity indices of the three model parameters v0, v1, α for fp = 10, 10 2, 10 4. Larger 
fp corresponds to slower solar wind velocity, in which case v0 becomes more influential, and v1 becomes less 
influential. The second-order indices show that v0 and v1 do not interact and that α's interaction with v0 and v1 is 
minor compared to the first-order indices. By the first- and total-order indices of α, we can conclude that it is the 
most influential parameter independent of fp (in comparison to v0 and v1) which agrees with the ordering in the 
WSA model, see Section 3.4.

Appendix B: Affine Invariant Ensemble Sampler (AIES) and Convergence 
Assessment
In this study, we use the affine invariant ensemble sampler (AIES) developed by (Goodman & Weare, 2010), 
which is an adaptive ensemble extension of the original Metropolis-Hastings sampler (Hastings,  1970; 
Metropolis et al., 1953). Instead of evolving a single Markov chain, AIES evolves an ensemble of chains in 
parameter space called walkers. It is computationally advantageous to evolve an ensemble of chains instead 
of a single Markov chain since one can exploit the parallelism of the ensemble method and reach convergence 
significantly faster (as measured by the integrated autocorrelation time, see Equation B2). AIES is invariant 
under an affine transformation of the parameter space, which is particularly appealing for problems where the 
parameter scales vary by several orders of magnitude, that is, highly anisotropic target pdfs. AIES can trans-
form anisotropic pdfs to isotropic pdfs with an affine transformation, which is much easier to sample from. 
Additionally, other MCMC samplers typically require tuning many sampler hyperparameters; for example, 
Metropolis-Hastings has d 2 hyperparameters where d is the number of uncertain parameters (entries of the 
Gaussian proposal distribution covariance). Such tuning is often infeasible when the posterior evaluations are 
computationally demanding, as is the case in many space weather applications. AIES addresses this challenge 
by having only two hyperparameters in the stretch move (Goodman & Weare, 2010). One hyperparameter in 

fp 𝐴𝐴 𝐴𝐴𝑣𝑣0
 𝐴𝐴 𝐴𝐴𝑣𝑣1

 Sα 𝐴𝐴 𝐴𝐴𝑣𝑣0 ,𝑣𝑣1
 𝐴𝐴 𝐴𝐴𝑣𝑣0 ,𝛼𝛼

 𝐴𝐴 𝐴𝐴𝑣𝑣1 ,𝛼𝛼
 𝐴𝐴 𝐴𝐴𝑣𝑣0

 𝐴𝐴 𝐴𝐴𝑣𝑣1
 Tα

10 0.061 0.383 0.512 0 0.008 0.034 0.07 0.417 0.554

10 2 0.131 0.133 0.679 0 0.011 0.045 0.143 0.178 0.735

10 4 0.289 0.036 0.623 0 0.01 0.041 0.3 0.077 0.674

Table A1 
The Analytically Computed Sobol' Sensitivity Indices of the WS Model for fp = 10, 10 2, 10 4. The Results Show That α Is 
the Most Influential Parameter (in Comparison to v0 and v1). Additionally, the Indices Indicate That v0 Is More Influential 
When fp Is High and That v1 Is More Influential When fp Is Low



Space Weather

ISSAN ET AL.

10.1029/2023SW003555

20 of 23

AIES is the number of walkers L, which is required to be greater than double the number of uncertain param-
eters L ≥ 2d + 1, and the other hyperparameter denoted by a is related to the stretch move, which we explain 
next.

The AIES stretch move is described as follows. Consider an ensemble of walkers {ϒ1(ℓ), …, ϒL(ℓ)}, where 
ℓ = 1, …, M is the iteration index and L is the number of walkers. The proposed next step for an arbitrary walker 
ϒk(ℓ) is given by

Υ𝑘𝑘(𝓁𝓁 + 1) = Υ𝑗𝑗(𝓁𝓁) + 𝑆𝑆(Υ𝑘𝑘(𝓁𝓁) − Υ𝑗𝑗(𝓁𝓁)) 

where ϒj(ℓ) is a complementary walker in the ensemble chosen at random (where j ≠ k), S is a random vari-
able with density g(s) that satisfies 𝐴𝐴 𝐴𝐴

(

1

𝑠𝑠

)

= 𝑠𝑠𝐴𝐴(𝑠𝑠) . An example of such a density, proposed by Goodman and 
Weare (2010) and implemented in the emcee Python package (Foreman-Mackey et al., 2013), is

𝑔𝑔(𝑠𝑠) =

⎧

⎪

⎨

⎪

⎩

1
√

𝑠𝑠
𝑠𝑠 ∈

[

1

𝑎𝑎
, 𝑎𝑎

]

0 otherwise,

 (B1)

where a > 1 can be adjusted to improve the sampler's performance and is typically set to a = 2. Thus, the proposed 
next step for a given walker lies on a straight line connecting the walker's current location and another random 
walker in the ensemble. The acceptance probability of the next proposed step is

ℙ(Υ𝑘𝑘(𝓁𝓁 + 1)|Υ𝑘𝑘(𝓁𝓁)) = min

(

1, 𝑆𝑆𝑑𝑑−1 𝜋𝜋(Υ𝑘𝑘(𝓁𝓁 + 1))

𝜋𝜋(Υ𝑘𝑘(𝓁𝓁))

)

, 

where S is the random variable with density defined in Equation B1, d is the number of uncertain parameters, and 
π is the target pdf. If the proposal is rejected, then ϒk(ℓ + 1) = ϒk(ℓ).

In this study, we use the Python implementation of AIES, that is, the emcee package (version 3.1.4) developed 
by Foreman-Mackey et al. (2013), with the stretch move, a = 2, and L = 250 walkers. We initialize the walkers 
by randomly sampling a Gaussian density with the mean set to the prior mean and standard deviation set to 10 −2 
times the prior range.

Markov Chain Monte Carlo Burn-in. MCMC burn-in refers to the period when a Markov chain exhibits initial 
transient behavior unrepresentative of the target pdf. It is therefore recommended to disregard the first few iter-
ations at the beginning of the Markov chain (Smith, 2013, §8.4). Burn-in is typically an artifact of selecting a 
low-probability initial condition and can also be thought of as a way to find a better initial condition. The burn-in 
length can be chosen by detecting the iteration where the target pdf evaluations start to plateau, which can be 
assessed visually (or statistically) by monitoring the likelihood evaluations and the marginal paths associated with 
each parameter as a function of MCMC iterations. We found that after 10 3 iterations, the likelihood evaluations 
began to plateau, meaning the Markov chains entered a region of high probability. We, therefore, disregard the 
first 10 3 samples in each walker, which we consider as the burn-in period.

Markov Chain Monte Carlo Convergence Assessment. Estimating the mean of a Markov chain (or an ensemble 
of Markov chains) is challenging since its samples are not independent and identically distributed (i.i.d.). This 
is because—by definition—each sample depends on the previous sample in a Markov chain. Therefore, samples 
drawn close to each other tend to be correlated. The MC mean estimator of an ensemble of Markov chains with 
L walkers and M iterations is an unbiased estimator, that is,

�̂�𝜇 =
1

𝑀𝑀

𝑀𝑀
∑

𝓁𝓁=1

(

1

𝐿𝐿

𝐿𝐿
∑

𝑗𝑗=1

Υ𝑗𝑗(𝓁𝓁)

)

with 𝕍𝕍ar[�̂�𝜇] =
𝜏𝜏

𝐿𝐿𝑀𝑀
𝕍𝕍ar[Υ], 

where τ is the integrated autocorrelation time (IAT)
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𝜏𝜏 =

∞
∑

𝓁𝓁=−∞

𝐶𝐶(𝓁𝓁)

𝐶𝐶(0)
= 1 + 2

∞
∑

𝓁𝓁=1

𝐶𝐶(𝓁𝓁)

𝐶𝐶(0)
 (B2)

and 𝐴𝐴 𝐴𝐴(𝓁𝓁) = limℎ→∞ℂov[Υ(𝓁𝓁 + ℎ),Υ(ℎ)] is the lag-ℓ autocovariance function. In practice, the IAT and the auto-
covariance function are estimated using a finite Markov chain of length M, see Foreman-Mackey et al. (2013) 
for a more detailed discussion. The larger the IAT, the more samples are needed to converge to the target pdf. In 
this study, we run the chains until their length M is at least 50 times the maximum IAT (which is computed for 
each parameter) as suggested by Foreman-Mackey et al. (2013) and compute the estimated IAT using the Python 
emcee package (Foreman-Mackey et al., 2013).

Acronyms
UQ Uncertainty Quantification
QoI Quantity of Interest
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
PFSS Potential-field Source-surface
WSA Wang-Sheeley-Arge
HUX Heliospheric Upwind eXtrapolation
GONG Global Oscillations Network Group
ACE Advanced Composition Explorer
RMSE Root mean squared error
CR Carrington rotation
AIES Affine Invariant Ensemble Sampler
MC Monte Carlo
pdf probability density function

Data Availability Statement
The public repository https://github.com/opaliss/Parameter_Estimation_Solar_Wind or https://zenodo.org/
record/8247798 contains a collection of Jupyter notebooks in Python 3.9 containing the code and data used in 
this study. The GONG synoptic maps are retrieved from https://gong.nso.edu/data/magmap/crmap.html and the 
ACE spacecraft observations can be found at https://cdaweb.gsfc.nasa.gov/index.html.
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